Facial Weak Order

Aram Dermenjian

Joint work with: Christophe Hohlweg (LACIM) and Vincent Pilaud (CNRS & LIX)

Université du Québec à Montréal

15 May 2016

< m

< ∃ > <

History and Background

The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

Image: Image:

∃ ▶ ∢

History and Background

- The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.
- *Finite Coxeter System* (*W*, *S*) such that

$$W := \langle s \in S \, | \, (s_i s_j)^{m_{i,j}} = e \, \, ext{for} \, \, s_j \in S
angle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

• A *Coxeter diagram* Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

A B A A B A

Image: Image:

History and Background

The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

Example $W_{B_3} = \langle s_1, s_2, s_3 | s_1^2 = s_2^2 = s_3^2 = (s_1 s_2)^4 = (s_2 s_3)^3 = (s_1 s_3)^2 = e \rangle$ $\Gamma_{B_3} : \underbrace{4}_{s_1} \underbrace{5}_{s_2} \underbrace{5}_{s_3}$

Image: Image:

History and Background

 The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

Let (W, S) be a Coxeter system.

- Let $w \in W$ such that $w = s_1 \dots s_n$ for some $s_i \in S$. We say that w has *length* n, $\ell(w) = n$, if n is minimal.
- Let the (right) weak order be the order on the Cayley graph where ^W → ^{WS} and ℓ(w) < ℓ(ws).</p>
- For finite Coxeter systems, there exists a longest element in the weak order, w_{\circ} .

イロト イポト イヨト イヨト

History and Background

The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

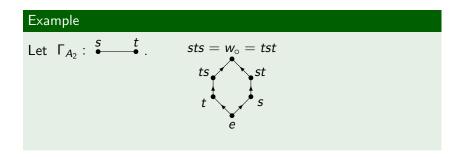


Image: Image:

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

∃ ▶ ∢

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers,
 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

3 1 4

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers,
 gave a global definition of this order combinatorially, and
 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

< ∃ > <

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers, √
 gave a global definition of this order combinatorially, and √
 showed that the poset for this order is a lattice. √
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

< ∃ > <

Motivation

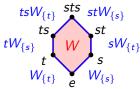
- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers, √
 gave a global definition of this order combinatorially, and √
 showed that the poset for this order is a lattice. √
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

A B F A B F

Image: Image:

Parabolic Subgroups

- Let $I \subseteq S$.
 - *W_I* = ⟨*I*⟩ is the standard parabolic subgroup with long element denoted *w*_{o,*I*}.
 - W^I := {w ∈ W | ℓ(w) ≤ ℓ(ws), for all s ∈ I} is the set of minimal length coset representatives for W/W_I.
 - Any element $w \in W$ admits a unique factorization $w = w' \cdot w_l$ with $w' \in W'$ and $w_l \in W_l$.
 - By convention in this talk xW_I means $x \in W^I$.
 - Coxeter complex \mathcal{P}_W the abstract simplicial complex whose faces are all the standard parabolic cosets of W.



Local Definition Global Definition Root Inversion Set Equivalence

Facial Weak Order

Definition (Krob et.al. [2001], Palacios, Ronco [2006])

The *(right) facial weak order* is the order \leq_F on the Coxeter complex \mathcal{P}_W defined by cover relations of two types:

(1)
$$xW_I \leq xW_{I\cup\{s\}}$$
 if $s \notin I$ and $x \in W^{I\cup\{s\}}$
(2) $xW_I \leq xw_{\circ,I}w_{\circ,I\smallsetminus\{s\}}W_{I\smallsetminus\{s\}}$ if $s \in I$,

where $I \subseteq S$ and $x \in W^I$.

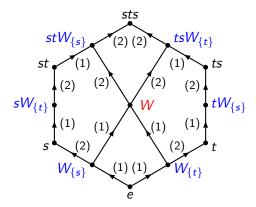
Image: Image:

- 4 3 6 4 3 6

Local Definition Global Definition Root Inversion Set Equivalence

Facial weak order example

(1) $xW_I \ll xW_{I \cup \{s\}}$ if $s \notin I$ and $x \in W^{I \cup \{s\}}$ (2) $xW_I \ll xw_{\circ,I}w_{\circ,I \smallsetminus \{s\}}W_{I \smallsetminus \{s\}}$ if $s \in I$



< A

3 ×

Local Definition Global Definition Root Inversion Set Equivalence

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers,
 gave a global definition of this order combinatorially, and
 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

Image: Image:

.

Local Definition Global Definition Root Inversion Set Equivalence

Root System

- Let $(V, \langle \cdot, \cdot \rangle)$ be a Euclidean space.
- Let W be a group generated by a set of reflections S. $W \hookrightarrow O(V)$ gives representation as a finite reflection group.
- \blacksquare The reflection associated to $\alpha \in \mathcal{V} \backslash \{\mathbf{0}\}$ is

$$s_{\alpha}(v) = v - \frac{2 \langle v, \alpha \rangle}{||\alpha||^2} \alpha \quad (v \in V)$$

- A root system is $\Phi := \{ \alpha \in V \mid s_{\alpha} \in W, ||\alpha|| = 1 \}$
- We have Φ = Φ⁺ ⊔ Φ[−] decomposable into positive and negative roots.

(日) (同) (三) (三)

s $-\gamma$ t

Local Definition Global Definition Root Inversion Set Equivalence

Inversion Sets

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Example

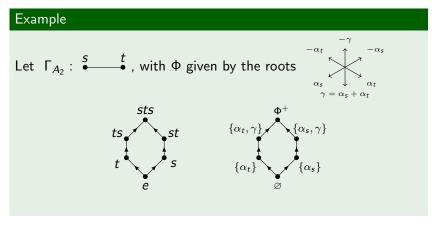
Let
$$\Gamma_{A_2}$$
: $\overset{s}{\bullet}$, with Φ given by the roots
 $\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-)$
 $= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$
 $= \{\alpha_t, \gamma\}$

(日) (周) (三) (三)

Local Definition Global Definition Root Inversion Set Equivalence

Weak order and Inversion sets

Given $w, u \in W$ then $w \leq_R u$ if and only if $\mathbf{N}(w) \subseteq \mathbf{N}(u)$.



-

Local Definition Global Definition Root Inversion Set Equivalence

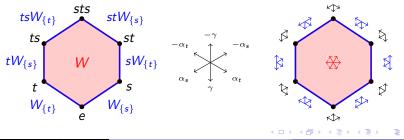
Root Inversion Set

Definition (Root Inversion Set)

Let xW_I be a standard parabolic coset. The *root inversion set* is the set

$$\mathsf{R}(xW_I) := x(\Phi^- \cup \Phi_I^+)$$

Note that $N(x) = \mathbf{R}(xW_{\varnothing}) \cap \Phi^+$.



A. Dermenjian (UQÀM)

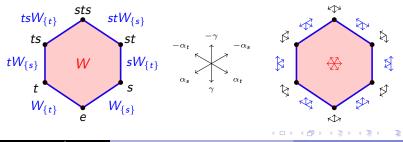
Local Definition Global Definition **Root Inversion Set** Equivalence

Root Inversion Set

Example

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi^+_{\{t\}})$$

= $s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_s, -\gamma, -\alpha_t, \gamma\}$



A. Dermenjian (UQÀM)

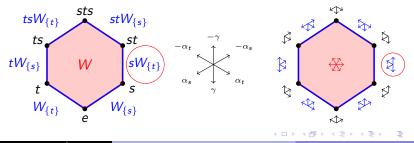
Local Definition Global Definition **Root Inversion Set** Equivalence

Root Inversion Set

Example

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi^+_{\{t\}})$$

= $s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_s, -\gamma, -\alpha_t, \gamma\}$



A. Dermenjian (UQÀM)

15 May 2016 12/18

Local Definition Global Definition Root Inversion Set Equivalence

Equivalent definitions

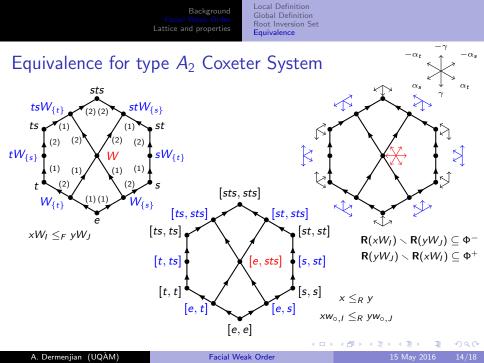
Theorem (D., Hohlweg, Pilaud [2016])

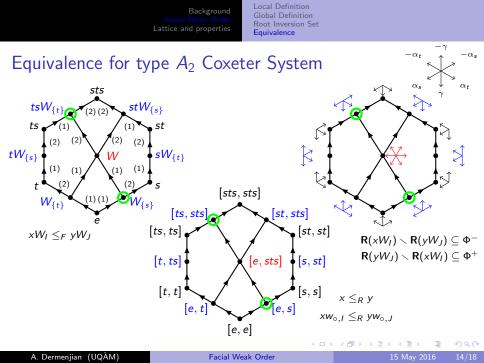
The following conditions are equivalent for two standard parabolic cosets xW_I and yW_J in the Coxeter complex \mathcal{P}_W

1
$$xW_I \leq_F yW_J$$

- **2** $\mathbf{R}(xW_I) \smallsetminus \mathbf{R}(yW_J) \subseteq \Phi^-$ and $\mathbf{R}(yW_J) \smallsetminus \mathbf{R}(xW_I) \subseteq \Phi^+$.
- 3 $x \leq_R y$ and $xw_{\circ,I} \leq_R yw_{\circ,J}$.

イロト イポト イヨト イヨト





Lattice

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers, \checkmark
 - $_{
 m 2}$ gave a global definition of this order combinatorially, and \checkmark
 - 3 showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

→ Ξ →

Lattice

Facial weak order lattice

Theorem (D., Hohlweg, Pilaud [2016])

The facial weak order (\mathcal{P}_W, \leq_F) is a lattice with the meet and join of two standard parabolic cosets xW_I and yW_J given by:

 $\begin{aligned} xW_I \wedge yW_J &= z_{\wedge}W_{K_{\wedge}}, \\ xW_I \vee yW_J &= z_{\vee}W_{K_{\vee}}. \end{aligned}$

where,

 $\begin{array}{ll} z_{\scriptscriptstyle \wedge} = x \wedge y & \text{and} & K_{\scriptscriptstyle \wedge} = D_L \big(z_{\scriptscriptstyle \wedge}^{-1} (x w_{\circ, I} \wedge y w_{\circ, J}) \big), \text{ and} \\ z_{\scriptscriptstyle \vee} = x w_{\circ, I} \vee y w_{\circ, J} & \text{and} & K_{\scriptscriptstyle \vee} = D_L \big(z_{\scriptscriptstyle \vee}^{-1} (x \vee y) \big) \end{array}$

Corollary (D., Hohlweg, Pilaud [2016])

The weak order is a sublattice of the facial weak order lattice.

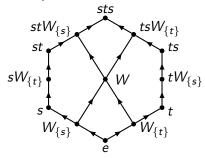
A. Dermenjian (UQÀM)

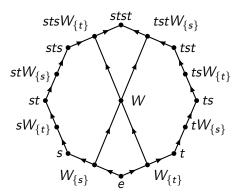
Facial Weak Order

15 May 2016 16/18

Lattice

Example: A_2 and B_2





< A

Lattice

Example: A_2 and B_2

Example (Meet example)

Recall

$$\begin{aligned} xW_{I} \wedge yW_{J} &= z_{\wedge}W_{K_{\wedge}} \\ \text{where} \quad z_{\wedge} &= x \wedge y \\ K_{\wedge} &= D_{L}(z_{\wedge}^{-1}(xw_{\circ,I} \wedge yw_{\circ,J})) \end{aligned}$$

We compute $ts \wedge stsW_{\{t\}}$.

$$egin{aligned} & z_{\scriptscriptstyle\wedge} = ts \,\wedge\, sts = e \ & \mathcal{K}_{\scriptscriptstyle\wedge} = D_L(z_{\scriptscriptstyle\wedge}^{-1}(tsw_{\circ,\emptyset} \wedge\, stsw_{\circ,t})) \ & = D_L(e(ts \,\wedge\, stst)) \ & = D_L(ts) = \{t\}. \end{aligned}$$

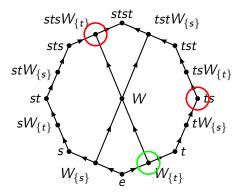


Image: A math a math

Lattice

Thank you!

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

